Differences in Dynamic Modulus of Elasticity Determined by Three Vibration Methods and Their Relationship with Static Modulus of Elasticity

نویسندگان

  • Shakti Chauhan
  • Anil Sethy
چکیده

Dynamic modulus of elasticity was determined in clearwood samples of eight tropical hardwood species using longitudinal vibrations, flexural vibration and ultrasonic transit-time methods. These samples were subsequently subjected to three point static bending test to determine static modulus of elasticity and modulus of rupture. Acoustic velocity and wood density were found to be independent parameters as the velocity was nearly the same in wood with distinctly different densities. Among the three dynamic measurements, modulus from the ultrasonic method was the highest followed by the longitudinal vibration and flexural vibration. Any of three vibration methods could be used to predict static modulus as they exhibited a near perfect correlation with static MoE. However, the dynamic modulus determined by different vibration methods were found to diverge with increasing static modulus. Wood density was the dominating factor influencing both modulus of elasticity and modulus of rupture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Experimental Study of the Modulus of Elasticity of Bricks and Masonry

One of the parameters identified as influencing the structural response of buildings is the dynamic Modulus of Elasticity of masonry. The Longitudinal Vibration Test Method and the Ultrasonic Pulse Methods were developed for the dynamic testing of concrete specimens. These two dynamic procedures are to be tested on masonry prisms to provide a verification of the methods. The first aim of this p...

متن کامل

Closed-form Solution of Dynamic Displacement for SLGS Under Moving the Nanoparticle on Visco-Pasternak Foundation

In this paper, forced vibration analysis of a single-layered graphene sheet (SLGS) under moving a nanoparticle is carried out using the non-local elasticity theory of orthotropic plate. The SLGS under moving the nanoparticle is placed in the elastic and viscoelastic foundation which are simulated as a Pasternak and Visco-Pasternak medium, respectively. Movement of the nanoparticle is considered...

متن کامل

Assessing the flexural strength changes in decayed wood of Iranian beech (Fagus orientalis) by using of nondestructive stress wave method

The aim of this study was to evaluate sound and decayed wood of Iranianbeech (Fagus orientalis) with a nondestructive stress wave method. Wood samples,with dimensions of 9 by 19 by 200 mm were decayed in laboratory soil-bed tests,based on European pre-standard ENV-807. The decay was evaluated by measuringbending dynamic modulus of elasticity (MOEd) and longitudinal dynamicmodulus of elasticity ...

متن کامل

Relation Between Static and Dynamic Modulus of Elasticity of Wood

Static and dynamic modulus of elasticity (MOE) of spruce lumber were determined under different conditions like cross head speed, bending and longitudinal vibration, and mode numbers. The characteristic time of MOE determination is introduced. Characteristic time is defined as the typical MOE determination time. Shorter characteristic times are shown to result in higher MOE values. An order of ...

متن کامل

Experimental determination of the dynamic Modulus of Elasticity of masonry units

One of the parameters that has been identified as influencing the structural response of buildings is the dynamic Modulus of Elasticity of masonry units. The first aim of this paper is to experimentally investigate the use of high frequency sinusoidal loading to determine the dynamic Modulus of Elasticity of masonry units. The Longitudinal Vibration and the Ultrasonic Pulse methods were origina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016